
This section requires you to know what a TURING MACHINE is and how to
program it. If you don’t, feel free to visit the introduction and the tutorial.

Turing machines with multiple tapes are exactly what their name says.
Probably if you load a two-tape example you’ll understand it by yourself, but
this section might save you some time. The only difference between single
and multi tape machines is in the transitions. Recall that transitions in single
taped machines are of the form

The executing condition mentions that the machine is reading just one
symbol, which reflects the fact that this corresponds to a machine with a
single tape. The same happens with the instruction as it writes one symbol.

In a Turing machine with k tapes, the condition of transitions depend on the
state of the machine and on the k symbols being read. Moreover, the
instruction changes the state, writes k symbols, and move the head of the k
tapes. This means that transitions have the next form:

Recall by the definition of transitions that xi

is either the cell pointed by head i, or any
of its two adjacent cells. We could try to
explain how to program this machines, but
it’s probably easier to see an example.

Page � of �1 3Martin Ugarte

TURING MACHINEs With
more than one tape

If the machine is in state
S1 and the head is

reading the symbol L1

Switch to state S2, write
symbol L2 and move

the head right

InstructionExecuting condition

If state is S1 and
• first head reads L1,
• second head reads L2,
 ⠇
• head k reads Lk

Switch to state S1 and
• write symbol L1’ in tape 1
• write symbol L2’ in tape 2
 ⠇
• write symbol Lk’ in tape k
• move head 1 to
• move head 2 to
 ⠇
• move head k to

InstructionExecuting condition

http://martinugarte.com/static/pdf/what_is_a_turing_machine.pdf
http://martinugarte.com/static/pdf/tutorial_for_turing_machine.pdf

Figure 1 shows the coding of a Turing
machine with two tapes. You can
notice that transitions’ conditions now
have three elements, one state and two
symbols to read. Furthermore, the
instructions have five elements: one
state to adopt, two symbols to write
and two ‘directions’ to move the first
and second head, respectively. Figure
2 shows how this machine would look
like after it is compiled and the input
‘0010100’ is loaded. Notice that the
input is loaded into the first tape. In
Turing machines with multiple tapes,
the input is loaded in the first tape and
every other tape will always start
empty (with every cell blank).

At the beginning of the run, the machine’s state is qInit and the symbols
being read are a zero and a blank. Thus, the condition that will trigger an
instruction is ‘qInit,0,_’. This is the condition of the first transition, which’s
instruction will be executed. Figure 3 shows how the machine looks like after
this transition is applied. Notice that the symbols and the head movement
directions in the transitions correspond to the tapes in a top-down fashion
(i.e. the first symbol corresponds to the topmost tape).

Page � of �2 3Martin Ugarte

Figure 1

Figure 2

We’ve shown just one transition of a Turing machine with multiple tapes, but
considering you already know about single taped machines this should be
enough to deduce everything you need to know. Maybe you are wondering
why the machine has just one state instead of one per tape. This is because
using multiple states just makes the model more complex, it does not provide
more computational power and doesn’t simplify the coding.

I sincerely hope that after reading the first four sections you are capable of
programming your own Turing machines and modifying other’s. If you are
interested in a more theoretical point of view about Turing machines, please
feel free to read the theoretical sections, starting with the introduction to
formal languages.

Page � of �3 3Martin Ugarte

http://martinugarte.com/static/pdf/formal_languages.pdf

